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Abstract 
We consider the following problem: For a system consisting of two submodules, the 
behavior of one submodule is known as well as the desired behavior S of the global 
system. What should be the behavior of the second submodule such that the behavior 
of the composition of the two submodules conforms to S ? - This problem has also 
been called "equation solving", and in the context of supervisory control, it is the 
problem of designing a suitable controller (second submodule) which controls a given 
system to be controlled (first submodule). Solutions to this problem have been 
described in the context of various specification formalisms and various conformance 
relations.   
This paper presents a generalization of this problem and its solution in the context of 
relational databases, and shows that this general solution can be used to derive several 
of the known algorithms that solve the problem in the context of regular behavior 
specifications based on finite state machines with synchronous communication or 
interleaving semantics. The paper also provides a new solution formula for the case 
that the module behaviors are specified in a hypothesis-guarantee paradigm and  
distinguish between input and output interactions. In the sub-case of regular behavior 
specifications and interleaving semantics, this solution formula gives rise to an 
algorithm for Input/Output Automata, which is similar to one published recently. The 
formula also applies to the case of synchronous communication, which was not 
considered before. 

 

1. Introduction 

In automata theory, the notion of constructing a product machine S from two given 
finite state machines S1 and S2, written S = S1 x S2, is a well-known concept. This 
notion is very important in practice since complex systems are usually constructed as a 
composition of smaller subsystems, and the behavior of the overall system is in many 
cases equal to the composition obtained by calculating the product of the behaviors of 
the two subsystems. Here we consider the inverse operation, also called equation 
solving: Given the composed system S and one of the components S1, what should be 
the behavior S2 of the second component such that the composition of these two 
components will exhibit a behavior equal to S. That is, we are looking for the value of 
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X which is the solution to the equation S1 x  X  = S. This problem is an analogy of the 
integer division, which provides the solution to the equation N1 * X = N for integer 
values N1 and N. In integer arithmetic, there is in general no exact solution to this 
equation; therefore integer division provides the largest integer which multiplied with 
N1 is smaller than N. Similarly, in the case of equation solving for machine 
composition, we are looking for the most general machine X which composed with S1 
satisfies some conformance relation in respect to S. In the simplest case, this 
conformance relation is trace inclusion. 

A first paper of 1980 [Boch 80d] (see also [Merl 83]) gives a solution to this problem 
for the case where the machine behavior is described in terms of labeled transition 
systems (LTS) which communicate with one another by synchronous interactions.  
This work was later extended to the cases where the behavior of the machines is 
described in CCS or CSP [Parr 89], by finite state machines (FSM) communicating 
through message queues [Petr 98] or input/output automata [Dris 99], and to 
synchronous finite state machines [Qin 91, Kim 97, Yevt 01a].  

The applications of this equation-solving method was first considered in the context of 
the design of communication protocols, where the components S1 and S2 may 
represent two protocol entities that communicate with one another [Merl 83]. Later it 
was recognized that this method could also be useful for the design of protocol 
converters in communication gateways [Kele 94, Tao 97a], and for the selection of test 
cases for testing a module in a context [Petr 96a]. It is expected that it could also be 
used in the other application domains where the re-use of components is important. If 
the specification of the desired system is given together with the specification of a 
module to be used as one component in the system, then equation solving provides the 
specification of a new component to be combined with the existing one. 

Independently, the same problem was identified in control theory for discrete event 
systems [Rama 89] as the problem of finding a controller for a given system to be 
controlled. In this context, the specification S1 of the system to be controlled is given, 
as well as the specification of certain properties that the overall system, including the 
controller, should satisfy. If these properties are described by S, and the behavior of the 
controller is X, then we are looking for the behavior of X such that the equation S1 x  
X  = S is satisfied. Solutions to this problem are described in [Bran 94] using a 
specification formalism of labeled transition systems where a distinction of input and 
output is made (interactions of the system to be controlled may be controllable (which 
corresponds to output of the controller) or uncontrollable (which correspond to input to 
the controller). This specification formalism seems to be equivalent to input/output 
automata (IOA) [Lync 89]. 

In this paper we show that the above equation solving problem in the different contexts 
of LTS, communicating finite state machines (synchronous and asynchronous) and 
IOA are all special cases of a more general problem which can be formulated in the 
context of relational database theory which is a generalized to allows for non-finite 
relations (i.e. relations representing infinite sets). We give the solution of this general 
problem and give a proof of its correctness. We also show how the different 
specialized version of this problem - and the corresponding solutions - can be derived 
from the general database version. 
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These results were obtained after discussions with N. Yevtushenko about the similarity 
of the formulas that describe the solution of the equation in [Yevt 01a] and [Merl 80]. 
The generalization described here became apparent after listening to a talk on 
stochastic relational databases by Cory Butz. In fact, it appears that the solution in the 
context of relational databases, as described in this paper, can be extended to the case 
of Bayesian databases.  

After a review of basic notions of relational databases, we present in Section 3 the 
problem of equation solving in the database context and provide solution formulas and 
their proofs. In Section 4, we discuss how the database model can be adapted to model 
the dynamic behavior of systems and their components based on trace semantics, that 
is, when the behavior of a system component is characterized by the set of possible 
traces of interactions in which it could participate. We consider the cases of 
synchronous rendezvous communication and interleaving semantics. We also explain 
how the solution formula for databases can be used to derive solution algorithms for 
systems with regular behavior (i.e. described by finite state transition systems). In 
Section 5 we introduce the distinction of input and output which allows the 
specification of a component behavior using the hypothesis-guarantee paradigm. We 
state appropriate conformance relations which can be used to define the submodule 
construction problem. Then we present a general solution formula and its proof. A 
discussion of  related work in the context of other specification formalisms and 
conformance relations concludes the paper.  

 

2. Review of some notions from the theory of relational databases  

The following concepts are defined in the context of the theory of relational databases 
[Maie 83]. Informally, a relational database is a collection of relations where each 
relation is usually represented as a table with a certain number of columns. Each 
column corresponds to an attribute of the relation and each row of the table is called a 
tuplet. Each tuplet defines a value for each attribute of the relation. Such a tuplet 
represents usually an “object”, for instance, if the attributes of the employee relation 
are name, city, age, then the tuplet <Alice, Ottawa, 25> represents the employee 
“Alice” from “Ottawa” who is 25 years old. 

The same attribute may be part of several relations. Therefore we start out with the 
definition of all attributes that are of relevance to the system we want to describe. 

Definition (attributes and their values): The set A = {a1, a2, …, am} is the set of 
attributes. To each attribute ai is associated a (possibly infinite) set Di  of possible 
values that this attribute may take. Di  is called the domain of the attribute  ai . We 
define D = U Di to be the discriminate union of the Di .  

Definition (relation): Given a subset  Ar of  A, a relation R over Ar, written R[Ar], is a 
(possibly infinite) set of mappings T: Ar --> D  with T(ai) ε Di. An integrity constraint 
is a predicate on such mappings. If the relation R has an integrity constraint C, this 
means that for each T ε R,  C(T) is true. 
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Note: In the informal model where a relation is represented by a table, a mapping T 
corresponds to a tuplet in the table. Here we consider relations that may include an 
infinite number of different mappings. 
Definition (projection): Given R[Ar] and Ax  ⊆ Ar , the projection of R[Ar] onto Ax , 
written projAx (R), is a relation over Ax with  

T ε projAx (R)  iff  there exists T’ ε R such that for all ai ε Ax , T(ai) = T’(ai) 

We note that here T is the restriction of T’ to the subdomain Ax . We also write T = 
projAx (T’). 

Definition (natural join): Given R1[A1] and R2[A2], we define the (natural) join of the 
relations R1 and R2 to be a relation over A1 U A2 , written  R1 join R2 , with 

 T ε (R1 join R2)  iff  projA1 (T) ε R1 and projA2 (T) ε R2 

Definition (chaos): Given Ar ⊆ A, we call chaos over Ar , written Ch[Ar] , the relation 
which includes all elements T of Ar --> D  with T(ai) ε Di , that is, the union of all 
relations over Ar. 

Note: We note that  Ch[Ar] is the Cartesian product of the domains of all the attributes 
in Ar . The notion of “chaos” is not common in database theory. It was introduced by 
Hoare [Hoar 85] to denote the most general possible behavior of a module. It was also 
used in several papers on submodule construction [xxFSM, Dris 99b]. 

It is important to note that we consider here infinite attribute value domains and 
relations that contain an infinite number of mappings (tuplets). In the context of 
traditional database theory, these sets are usually finite (although some results on 
infinite databases can be found in [Abit 95]). This does not change the form of our 
definitions, however. If one wants to define algorithms for solving equations involving 
such infinite relations, one has to worry about the question of what kind of finite 
representations should be adopted to represent these relations. The choice of such 
representations will determine the available algorithms and at the same time introduce 
restrictions on the generality of these algorithms. Some of these representation choices 
are considered in Sections 4 and 5. 

 

3. Equation solving in the context of relational databases 

3.1. Some interesting problems (simplest configuration) 

In the simple configuration assumed in this subsection, we consider three attributes a1, 
a2, and a3, and three relations R1[{a2, a3}], R2[{a1, a3}],   and R3[{a2, a1}].  Their 
relationship is informally shown in Figure 3.1  . 
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Figure 3.1: Configuration of 3 relations sharing 3 attributes 

 

We consider the following equation (which is in fact an inclusion relation)  

 proj {a2, a1} (R1 join R2 )  ⊆ R3                                                  (Equ. 1) 

If the relations R1 and R3 are given, we can ask the question: for what relation R2 will 
the above equation be true. Clearly, the empty relation, R2��� �����������	
����������
this equation. However, this case is not very interesting. Therefore we ask the 
following more interesting questions for the given relations R1 and R3 :  

Problem (1): Is there a maximal relation R2 that satisfies the above equation (maximal 
in the sense of set inclusion; any larger relation is no solution) ? 

Problem (2): Could there be more than one maximal solution (clearly not including one 
another) ? 

Problem (3): Is there a solution for the case when the  ⊆  operator is replace by 
equality of by the  ⊇  operator ? 

3.2. Some solutions 

First we note that there is always a single maximal solution. This solution is the set  

Sol(2) = {T ε Ch[{a1, a3}] | proj {a2, a1} (R1 join {T} )  ⊆ R3 }       (Equ. 2) 

This is true because the operators of set union and intersection obey the distributive 
law in respect to the projection and join operations, that is, projAx (Ri union Rj) =   
projAx (Ri)  U   projAx (Rj); and similarly for intersection and the join operations. 

While the above characterization of the solution is trivial, the following formula is 
useful for deriving algorithms that obtain the solution in the context of the specific 
representations discussed in Sections 4 and 5. 

Theorem: A solution for R2 that satisfies Equation (1), given R1 and R3 , is given by 
the following formula (where “/” denotes set substraction): 

Sol(3) = Ch[{a1, a3}] / proj{a1, a3} ( R1 join ( Ch[{a1, a2}] / R3 ) )       (Equ. 3) 

This is the largest solution and all other solutions of Equation (1) are included in this 
one. 

R3

R1 R2

a1 

a3 

a2 
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Informally, Equation (3) means that the largest solution consists of all tuplets over {a1, 
a3} that cannot be obtained from a projection of a tuplet T [{a1, a2, a3}] that can be 
obtained by a join from an element of R1 and a tuplet from Ch[{a1, a2}] that is not in 
R3. 

Proof:  First we note that (T2 ε Sol(3) ) is equivalent to the statement that there exist no 
T ε Ch [{a1, a2, a3}] such that                                                               (Equivalence 4)                              

     proj{a1, a3}(T) = T2 and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3     

We have to prove that Sol(3) = Sol(2) . In order to show that Sol(3) ⊆ Sol(2), we show that 

 proj {a2, a1} (R1 join Sol(3) )  ⊆ R3                                                      (Equ. 5) 
Taking any T’ ε (R1 join Sol(3)), we have proj{a2, a3}(T’) ε R1 and proj{a1, a3}(T’) ε Sol(3) . 
Since proj{a1, a3}(T’) ε Sol(3) ,  there is, according to Equivalence (4), no T ε Ch [{a1, a2, 
a3}] such that proj{a1, a3}(T) = proj{a1, a3}(T’)  and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε 
R3  . Since T’ satisfies the first two of these three conditions, we conclude that the last 
condition must be false for T’. Therefore we have that proj{a1, a2}(T’) ε R3  which 
implies Equation (5).  

In order to prove that Sol(3) ⊇  Sol(2) , we assume that this is not true and that there exist 
a tuplet T’ that is in Sol(2) , but not in Sol(3) . However, the latter implies, according to 
Equivalence (4), that there exists a T ε Ch [{a1, a2, a3}] such that  

     proj{a1, a3}(T) = T’ and T1 =
def proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3     (Equ. 6) 

Considering the definition of the join operation, we conclude that {T} = {T’} join {T1} 
since the join of two singleton relations contains at most one tuplet. But now we have a 
contradiction because ( T’ ε Sol(2) ) implies proj{a1, a2} ({T’} join {T1}) ⊆ R3 while 
Equation (6) states  proj{a1, a2} ({T’} join {T1})  ¬ε R3  . Therefore our assumption must 
be false.  Q.E.D.  

We note that the smaller solution 

   Sol(3*) =  proj{a1, a3} ( R1 join R3) / proj{a1, a3} ( R1 join ( Ch[{a1, a2}] / R3 ) )  (Equ. 3*) 

is also an interesting one, because it contains exactly those tuplets of Sol(3) that can be 
joint with some tuplet of R1 to result in a tuplet whose projection on {a1, a2} is in R3 . 
Therefore (R1 join Sol(3)) and (R1 join Sol(3*)) are the same set of tuplets; that means 
the same subset of R3 is obtained by these two solutions. In this sense, these solutions 
are equivalent. We note that the solution formula given in [Merl 83] corresponds to the 
solution Sol(3*). 

3.3. Some simple example 
We consider here a very simple example of three relations R1[{a2, a3}], R2[{a1, a3}],   
and R3[{a2, a1}] as discussed above and shown in Figure 3.1. We assume that the 
domains of the attributes are as follow: D1 = {n}, D2 = {aa, ab, ba, bb} and D3 = {c, d}. 
We assume that R1 and R3 contain the tuplets shown in Figure 3.2 below.  Then the 
evaluation of the solution formula Equation (3) leads to some intermediate results and 
the solution Sol(3) , also shown in Figure 3.2. 
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Figure 3.2 : Example of database equation solving (Example 1) 

 

3.4. A more general setting of the problem 

In Section 3.2 we assumed that all the three relations have two attributes and that each 
pair of relations share exactly one attribute. However, we may consider more general 
situations, such as shown in Figure 3.3. Here we consider different subsets A1, A2, A3 

and A0 of the global set of attributes A. The subsets A1, A2, and A3 correspond to the 
attributes a1, a2, and a3 considered in Section 3.1, while the subset A0 is a set of 
attributes that are shared by all three relations. 

 

 

 

 

 

 

 

Figure 3.3: Configuration of 3 relations sharing various attributes 

The generalization of Equation (1) is then defined as follows. We consider the three 
relations R1[A2 U A3 U A0], R2[A1 U A3 U A0],  , and R3[A2 U A1 U A0]. We consider 
the equation  

 proj (A2 U A1 U A0) (R1 join R2 )  ⊆ R3                                         (Equ. 1’) 

If the relations R1 and R3 are given, the largest relation R2 that satisfies the above 
equation is then characterized by the formula 

    Sol(3’)  = Ch[A1 U A3 U A0]  / proj (A1 U A3 U A0) ( R1 join ( Ch[A1 U A2 U A0]  / R3 ) )  

                                                                                                                       (Equ. 3’) 

The proof  of this equation is similar to the proof of Equation (3). 
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4. Equation solving in the context of composition of sequential machines or 
reactive software components 

4.1. Modeling system components and behavior using traces 

Sequential machines and reactive software components are often represented as black 
boxes with ports, as shown in Figure 4.1. The ports, shown as lines in Figure 4.1, are 
the places where the interactions between the component in question and the 
components in its environment take place. Sometimes arrows indicate the direction of 
the interactions, implying that one component produces the interaction as output while 
the other component(s) accept it as input. This distinction is further discussed in 
Section 5. 

 

 

 

 

Figure 4.1 : Components and their ports 

For allowing the different modules to communicate with one another, their ports must 
be interconnected. Such interconnection points are usually called interfaces. An 
example of a composition of three modules (sequential machines or reactive software 
components) is shown in Figure 4.2. Their ports are pair-wise interconnected at three 
interfaces a1, a2, and a3.  

 

 

 

 

 

Figure 4.2 : Configuration of 3 components interconnected through 3 interfaces 

The dynamic behavior of a module (sequential machine or a reactive software 
component) is usually described in terms of traces, that is, sequences of interactions 
that take place at the interfaces to which the module is connected. Given an 
interconnection structure of several modules and interfaces, we define for each 
interface i the set of possible interactions Ii that may occur at that interface. For each 
(finite) system execution trace, the sequence of interactions observed at the interface ai 
is therefore an element of  Ii * ( a finite sequence of elements in Ii ).  

For communication between several modules, we consider in this paper rendezvous 
interactions. This means that, for an interaction to occur at an interface, it is necessary 
that all modules connected to that interface must make a state transition compatible 
with that interaction at that interface. 

R1 R2

R3

a1 a2 

a3 
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In our basic communication model we assume that the interactions between the 
different modules within the system are synchronized by a clock, and that there must 
be an interaction at each interface during each clock period. We call this “synchronous 
operation”.  

4.2. Correspondence with the relational database model 

We note that the above model of communicating system components can be described 
in the formalism of (infinite) relational databases as follows: 

(1) A port corresponds to an attribute and a module to a relation. For instance, the 
interconnection structure of Figure 4.2 corresponds to the relationship shown in 
Figure 3.1. The interfaces a1, a2, and a3 in Figure 4.2 correspond to the three 
attributes a1, a2, and a3  introduced in Section 2.2, and the three modules 
correspond to the three relations. 

(2) If a given port (or interface) corresponds to a particular attribute ai, then the 
possible execution sequences Ii* occurring at that port correspond to the 
possible values of that interface, i.e. Di = Ii* . 

(3) The behavior of a module Mx is given by the tuplets Tx contained in the 
corresponding relation Rx [Ax], where Ax corresponds to the set of ports of Mx. 
That is, a trace tx of the module X corresponds to a tuplet Tx which assigns to 
each interface ai the sequence of interactions sxi observed at that interface 
during the execution of this trace. We write  sxi 

@t to denote the t-th element of 
sxi 

Since we assume “synchronous operation” (as defined in Section 4.1), all tuplets in a 
relation describing the behavior of a module must satisfy the following constraint: 

Synchrony constraint: The length of all attribute values are equal. (This is the 
length of the trace described by this tuplet.) 

As usual, we assume that the possible traces of a module are closed under the prefix 
relation. Therefore a relation R[A] describing the behavior of a module must also 
satisfy the following constraint: 

Prefix-closure constraint: If Tx ε R and Ty is such that sxi is a prefix of syi for all i 
ε A (and  Ty satisfies the synchrony constraint), then Ty ε R. 

As an example we consider two module behaviors R1 and R2 which have some 
similarity with the relations R1 and R2 considered in the database example of Section 
3.3. These behaviors are described in the form of finite state transition machines in 
Figure 4.3. The interactions at the interface a� are a, b or n, the interactions at a� are c, 
d or n, and the interface a� only allows the interaction n. The notation b/n for some 
state transition means that this transition occurs when at one interface the interaction b 
occurs and at the other interface the interaction n. For instance, the traces of length 3 
defined by the behavior of R� are ( a/n, n/c. b/n), (a/n, n/d, b/n), and (a/n, n/d, a/n), 
which are similar, in some sense, to the tuplets in the relation R��of the example in 
Section 3.3. 
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Figure 4.3 : Behavior specifications R1 and R2 (Example 2) 

 

4.3. The case of synchronous finite state machines 

If we restrict ourselves to the case of regular behavior specifications, where the 
(infinite) set of traces of a module can be described by a finite state transition model, 
we can use Equation (3) or Equation (3*) to derive an algorithm for equation solving. 
We note that the algorithm reported in [Yevt 01a] corresponds to Equation (3). Similar 
work is also described in [Kim 97] and [Qin 91]. In this case, the behavior 
specification for a module is given in the form of a finite state transition diagram where 
each transition is labeled by a set of interactions, one for each port of the module, as in 
the example above.  

The algorithm for equation solving is obtained from Equation (3) or Equation (3*) by 
replacing the relational database operators projection, join and substraction by the 
corresponding operations on finite state automata. The database projection corresponds 
to eliminating those interaction labels from all transitions of the automaton which 
correspond to attributes that are not included in the set of ports onto which the 
projection is done. This operation, in general, introduces nondeterminism in the 
resulting automaton. The join operation corresponds to the composition operator of 
automata which is of polynomial complexity (see above references for more details). 
The substraction operation is of linear complexity if its two arguments are 
deterministic. Since the projection operator introduces nondeterminism, one has to 
include a step to transform the automata into their equivalent deterministic forms.  This 
step is of exponential complexity. Therefore the equation solving algorithm for 
synchronous finite state machines is of exponential complexity. However, our 
experience with some examples involving the interleaved semantics described below 
[Dris 99a] indicates that reasonably complex systems can be handled in many cases.  

4.4. The case of interleaving rendezvous communication 

Under this subsection, we consider non-synchronous rendezvous communication also 
called interleaving semantics, were at each instant in time at most one interaction takes 
place within all interconnected system components. This communication paradigm is 
used for instance with labeled transition systems (LTS). One way to model the 
behavior of such systems is to consider a global execution trace which is the sequence 
of interactions in the order in which they take place at the different interfaces (one 
interface at a time). Each element of such an execution sequence defines the interface 

a/n 

b/n 

a/n n/c 

n/d 

n/d R3 R1 

n/n 
b/n 

b/n 

a/n 

a/n 
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ai at which the interaction occurred and the interaction vi which occurred at this 
interface.  

Another way to represent the behavior of such systems is to reduce it to the case of 
synchronous communication as follows. This is the approach which we adopt in this 
paper because it simplifies the correspondence with the relational database model. In 
order to model the interleaving semantics, we postulate that all sets Ii include a dummy 
interaction, called null. It represents the fact that no interaction takes place at the 
interface. We then postulate that each tuplet T of a relation R[A] satisfies the following 
constraint: 

Interleaving constraint: For all time instants t (t > 0) we have that T(ai)[t] ��null 
implies T(aj)[t] = null for all aj  ε A (j ���	 

We note that tuplets that are equal to one another except for the insertion of time 
periods during which all interfaces have the null interaction are equivalent (called 
stuttering equivalence). One may adopt a normal form representation for such an 
equivalence class in the form of the execution sequence (in this class) that has no time 
instance with only null interactions. This execution sequence is trivially isomorphic to 
the corresponding interaction sequence in the first interleaving model considered 
above. 

We note that we may assume that all relations satisfy the constraint that they are closed 
under stuttering, that is,  T ε R implies that R also contains all other tuplets T’ that are 
stuttering equivalent to T. 

4.5. The case of finite labeled transition systems 

The interleaving rendezvous communication is adopted for labeled transition systems 
(LTS) (voir e.g. [Hoare 85]). To simplify the notation, we assume that the sets of 
interactions at different interfaces are disjoint (i.e. Ii intersection Ij = empty for ai ���j), 
and we introduce the overall set of interactions I = U(ai  ε A) Ii. Then a class of stuttering 
equivalent interleaving traces (as described in Section 4.4) correspond one-to-one to a 
sequence of interactions in I. 

If we restrict ourselves to the case where the possible traces of a module are described 
by a finite LTS, the resulting set of possible execution sequences are regular sets and 
the operations projection, join and substraction over interleaving traces can be 
represented by finite operations over the corresponding LTS representations. The 
situation is similar as in the case of synchronous finite state machines, discussed in 
Section 4.3, because of the nondeterminism introduced by the project operator, the 
substraction operation becomes of exponential complexity. The projection operation 
corresponds to replacing the interaction labels of transitions that correspond to ports 
that are not included in the projected set by a spontaneous transition label (sometimes 
written "i"). The join operation is the standard LTS composition operation, and the 
determination and substraction operations can be found in standard text books of 
automata theory. 

As an example, we may consider the behavior specifications given in Figure 4.3. If we 
interpret the interaction "n" as the null interaction, then the behaviors R1 and R3  satisfy 
the interleaving constraint described above and can be interpreted as labeled transition 
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systems. Their traces can be characterized by the regular expressions " (a . b)* "   and    
" (a . (c . b + d . b + d . a) )* ", respectively. If we execute the algorithm implied by 
Equation (3) we obtain the solution behavior for R2 which can be characterized by 
"c*". This solution is similar to the solution for the database example discussed in 
Section 3.3.  

 

5. Distinction of input and output 

5.1. Module specification based on hypothesis and guarantees 

The rendezvous communication paradigm considered in Section 4 has a drawback 
when it comes to its use for requirements specification. Usually, the requirements for a 
system module has two parts: (a) the hypothesis that the module may make about the 
behavior of the other modules within its environment and general operating 
assumptions such as temperature ranges etc., and (b) the guarantees that the module 
must provide concerning the behavior it will exhibit during execution. 

The distinction between these two aspects cannot be made clearly with the rendezvous 
communication paradigm because for any interaction to occur, it is necessary that all 
participating modules are ready for it. There is no notion that one of the modules is 
particularly responsible for initiating the interaction.  

We consider in the following a communication paradigm where, for each interaction 
taking place at some interface, there is one participating module for which the 
interaction is output, and it is input for all other modules that are connected to that 
interface. Whether the interaction will take place or not, and what its parameters will 
be, will solely be determined by the outputting module (the interaction must satisfy the 
guarantees provided by this module). The other participating modules for which the 
interaction is input do not influence the occurrence of the interaction and the values of 
its parameters. However, they may make the hypothesis that the outputting modules 
will satisfy the guarantees defined by their respective specifications, thus limiting the 
range of possibilities for receiving the interaction in question. 

This paradigm is the basis for the semantics of (input-output) finite state machines, 
Input/Output Automata (IOA) [Lync 89], as well as many software specification 
formalisms, such as [Adab 95, Misr 81]. It seems that this paradigm also subsumes the 
paradigm of controllable and uncontrollable interactions as considered for discrete 
event control design [Rama 89]. We note that in the case of finite state machines and 
IOA, we consider partially defined machines; the hypothesis is made that only those 
inputs will occur for which a transition is defined. 

We can introduce the distinction between input and output in our general relational 
database formalism as follows: Each attribute of a relation is marked as either input or 
output. An attribute of a relation resulting from a join operation is marked input if the 
same attribute is marked as input in the two operands of the join operation, otherwise it 
is marked output. A join operation is said to have “output conflict” if there is an 
attribute that is marked output for both operands. We consider in the following only 
join operations without output conflict. 
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We now introduce the following notations. Given a relation R[AR] and a tuplet T ε R, 
we write T|t for the tuplet which has as values for an attribute ai ε AR the prefix (of 
length t) of the value which T has for this attribute. For example, if T = <abc, def> then 
T|2 = <ab, de>. And we write T@t for the tuplet which has as value for an attribute ai ε 
AR the t-th elemenbt of the sequence which is the value of T for this attribute.For the 
example of T above, we have T@1 = <a, d> and  T@3 = <c, f>. Similarly, we write 
T@t(ai) to denote the t-th element of T(ai). 

In order to clearly distinguish between the input and output attributes of a relation R, 
we write R[AR

I | AR
O] where ai ε AR

I are the input attributes of R and ai ε AR
O the 

attributes marked output. 

5.2. Conformance relations 

In trace semantics without the distinction of input and output, as discussed in Section 
4, the conformance relations are very simple and can be summarized by the following 
definitions: 

(a) Valid trace: A tuplet (trace) T is valid in respect to a relation (specification) R if 
T ε R. 

(b) Equivalence of specifications: Two relations (specifications) are equivalent iff 
they are equal (i.e. they contain the same traces). 

(c) Trace inclusion: An implementation conforms to a specification R iff all 
possible traces of the implementation are valid in respect to R. 

In the case that we distinguish between inputs and outputs, we can still use the above 
definition of a valid trace, but the conformance relations between implementation and 
specification, or between different specifications are more complex, as described 
below. 

In order to define meaningful relations in the context of synchronous operation, we 
assume that a specification satisfies the constraint that the output allowed at time t by 
the specification does not depend on the input received at time t (but only on previous 
inputs and outputs). This implies that a delay of at least one time unit exists between a 
received input and the output which is caused by this input. The importance of this 
assumption is discussed in [Adab 94, Broy 95].  

In addition, we assume that the hypothesis made by a specification about the validity of 
the received input at a given time instance does not depend on the output selected by 
the module at the same time instance. We call these two assumptions together the unit-
delay constraint (UDC), which can be formally defined as follows: 

(d) Given a trace specifications R[AR] and a tuplet T ε R, we write next(T, R) for 
the relation that describes the possible interactions at the next time instant, 
formally: T’ ε next(T, R) iff the tuplet T’ is of length one and T.T’ ε R, where 
“.” denotes the pairwise concatenation of corresponding attribute values. 

(e) A trace specification (relation) R[AR
I | AR

O] satisfies the UDC iff for any T ε R 
the following holds: 

next(T, R) = proj AR
I (next(T, R))   join   proj AR

O (next(T, R)) 
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For characterizing conformance relations, it is important to distinguish different cases 
of invalid traces. If a given trace (tuplet) T is not valid in respect to a given trace 
specification (relation) R[AR

I | AR
O] (i.e. not T ε R), we may consider the longest valid 

prefix of T; there must exist a time instant t > 0 such that T|t-1 ε R and T@t  ¬ε  next(T|t-1 
, R)  (we use the notation where   ¬ε   means "not included in"). We now can 
distinguish whether the invalidity of the trace is caused by a wrong input or a wrong 
output at time instant t as follows: 

(i) Wrong output: We say that T has wrong output at time t, written T ε RWO(t) , 
iff  T|t-1 ε R and proj AR

O T@t  ¬ε  proj AR
O next(T|t-1 , R).  

(ii) Wrong input: We say that T has wrong input at time t, written T ε RWI(t) , iff  
T|t-1 ε R and proj AR

I T@t  ¬ ε proj AR
I next(T|t-1 , R).  

Clearly, it could also happen that T has wrong input and wrong output at time t.  

Based on the above definitions, we can now formally define the meaning of a 
component specification R[AR

I | AR
O] (similar to [Abad 94]) as follows: 

(1) A trace T over the alphabet A = AR
I U AR

O satisfies the guarantees of R, written 
T satG R,  iff for all t > 0 the following holds: T|t-1 ε R implies  T  ¬ ε RWO(t) . 

(2)  A trace T over A satisfies the hypotheses of R, written T satH R,   iff for all t > 0 
the following holds: T|t-1 ε R implies T  ¬ ε RWI(t) . 

(3)  A trace T over A satisfies the specification R, written T sat R, iff  (T satH R) 
implies (T satG R) 

(4) A trace T over an arbitrary (larger) alphabet satisfies the specification R[AR
I | AR

O] 
iff  the projection of T onto A = AR

I U AR
O satisfies R. 

(5) Given an interconnection structure containing several components with their 
respective behavior specifications Rk (i = 1, 2, …, n), we say that a trace T satisfies 
the interconnection structure iff it satisfies the specifications of all component 
specifications Rk . 

(6) Another specification R’[AR
I | AR

O] conforms to R[AR
I | AR

O]  iff for all traces T 
we have (T sat R’) implies (T sat R). 

 

5.3. Equation solving for specifications with hypothesis and guarantees 

Taking into account the difference between input and output as discussed above, the 
problem of equation solving must be formulated in a form different from Equation (1) 
in Section 3. Now we want to find the most general specification for R2 such that all 
traces that satisfy the interconnection structure of the modules R1 and R2 (see Figure 
5.1), and that also satisfy the hypothesis of R3, have the following two properties: 

(1) the guarantees of R3 are satisfied, and 

(2) the hypotheses of R1 are satisfied. 
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Figure  5.1 : Composition of components R1 and X with input/output interactions  
 
This can be formalized as follows.  We first note that we consider the alphabet A = 
A31

O  U  A31
I  U  A32

O  U  A32
I  U  A12

O  U  A12
I , as shown in the figure. We introduce 

the following abbreviations for the alphabets of the modules R1, X and R3, 
respectively: 

A1  = A31
O  U  A31

I  U  A12
O  U  A12

I ,  
A2  = A32

O  U  A32
I  U  A12

O  U  A12
I ,  

A3  = A31
O  U  A31

I  U  A32
O  U  A32

I  . 

We also note that the elements of (A31
O  U   A12

O ) are the outputs of R1, the other 
elements of A1 are its inputs, A32

O  U  A12
I are the outputs of X, the other elements of 

A2 are its inputs, and  A31
O  U  A32

O  are the outputs of R3, the other elements of A3 
are its inputs.  

Given two relations R1 and R3 , the equation solving problem, now, consists of finding 
a set of traces X[A1] which satisfies Equation (1IO) below: 

projA3 (R1 join X) conforms to R3                                                 (Equ. 1IO) 

Theorem: The set of traces Sol(IO) defined by Equation (3IO) is the largest set 
satisfying Equation (1IO): 

 Sol(IO) = Ch[A2] / projA2  Ut>0 (                                                      (Equ. 3IO) 

(R1 join R3
WO(t) )  U  (R1

WI(t) join R3 )   U   (R1
WI(t) join R3

WO(t) )  )     
 
To prove the correctness of this solution, we proceed in a similar manner as for the 
proof of Equation (3) in Section 3.2. We consider an arbitrary trace T produced by the 
composition of R1 with the solution Sol(IO), and show that it satisfies the requirement of 
the problem. We have to prove that the following property holds for any trace T over 
A: 

[ projA1(T) satH R1 implies  projA1(T) satG R1 ] and 
T ε Sol(IO) and  [ projA3(T) satH R3]                                                    (Equ. 7) 
 implies   [ projA3(T) satG R3 ] 

This property can be proven by induction on the length of T. As the basis for the 
induction, we consider the trace of zero length for which the property is satisfied.  
 
It is easily seen that the induction step is essentially equivalent to showing the 
following property. This property states that if the prefix of length (t-1) of T has the 
property that its projections onto A1, A2, and A3 belong to the specifications R1, 

R1 X 

R3

A32
O 

A12
O 

A12
I 

A32
I A31

O A31
I 
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Sol(IO) and R3, respectively, then T will have at the next time instant (a) correct output 
in respect to R3 and (b) correct input in respect to R1. Formally: 

( projA1(T
|t-1) ε R1 ) and ( projA2(T) ε Sol(IO) ) and ( projA3(T

|t-1) ε R3 )  
and ( projA3(T

|t) ¬ε R3 
WI(t) )  implies                                                   (Equ. 8) 

( projA3(T
|t)   ¬ε R3 

WO(t) )   and ( projA1(T
|t)   ¬ε R1 

WI(t) )   
The consequence of Equation (8), together with the antecedent of Equation (7), implies 
that ( projA1(T

|t) ε R1 ) and ( projA3(T
|t) ε R3 ) are true, thus validating the antecedent of 

Equation (8) for the next induction step (i.e. for time t). 
 
In order to show that Equation (8) holds, we use the fact that ( projA2(T) ε Sol(IO) ). 
According to the definition of Sol(IO), this is equivalent to saying that there exists no T’ 
over A such that ( projA2(T’) = projA2(T) ) and for some t > 0 any of the following 
cases is true: 
(a)  projA1(T’) ε R1  and  projA3(T’) ε R3 

WO(t)    
(b)  projA1(T’) ε R1 

WI(t)
  and  projA3(T’) ε R3  

(c)  projA1(T’) ε R1 
WI(t)

  and  projA3(T’) ε R3 
WO(t)    

Therefore, the properties (a), (b) and (c) must also be false for T.  We note that 
falseness of (a) and (c) implies that projA3(T) not ε R3 

WO(t) , and the falseness of (b) 
and (c) implies that projA1(T) not ε R1 

WI(t)
  (which proves the consequence in Equation 

(8)).  
The proof that Sol(IO) is the largest solution is similar as the corresponding proof in 
Section 3.2. 

5.4. The case of interleaving semantics 

In the case of interleaving semantics, there is at each time instant only a real interaction 
at one of the interfaces, while the other interfaces have the null interaction. In this 
context, the situation of wrong input has also been called "unspecified reception" [Zafi 
80].  

In this case, there can never be a time instant with wrong input for R1 and wrong 
output for R3. Therefore the term  (R1

WI(t) join R3
WO(t) )  in the formula for Sol(IO) in the 

Theorem of Section 5.3 is empty and can be dropped.  

We note that the algorithm described in Section 5 of [Dris 99b] corresponds to the 
formula of the above theorem for the case of regular behavior specifications in the 
form of Input/Output Automata. 

 

6. Conclusions 

The problem of submodule construction (or equation solving for module composition) 
has some important applications for the real-time control systems, communication 
gateway design, and component re-use for system design in general. Several 
algorithms for solving this problem have been developed based on particular 
formalisms that were used for defining the dynamic behavior of the desired system and 
the existing submodule. In this paper, we have shown that this problem can also be 
formulated in the context of relational databases. The solution to the problem is given 
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in the form of a set-theoretical formula which defines the largest relation that is a 
solution of the equation.  

Whether this solution is useful for practical applications in the context of relational 
databases is not clear. However, we have shown here that the formulation of this 
problem in the context of relational databases is a generalization of several of the 
earlier approaches to submodule construction, in particular in the context of 
synchronous finite state machines [Kim 97, Yevt 01a], Labelled Transition Systems 
(LTS) [Merl 83], and Input/Output Automata (IOA) [Dris 99c], and it was explained in 
[Dris 99b] that the case of IOA is a generalization of the case of communicating finite 
state machines with queued interactions [Petr 98]. In the case of regular behavior 
specifications in the form of finite transition machines, the set-theoretical solution 
formula of the database context can be used to derive solution algorithms based on the 
finite representations of the module behaviors, which correspond to those described in 
the literature.  

The solution formula for the case of synchronous communication with the distinction 
of input and output (implying a module specification paradigm with hypothesis and 
guarantees, as discussed in section 5) has not been described before, as far as I know. It 
can be used to derive an algorithm to solve the submodule construction problem for 
synchronous communicating machines when a distinction between input and output is 
made. This context has not yet been considered for the problem of submodule 
construction.  

We believe that these solution formulas can also be used to derive submodule 
construction algorithms for specification formalism that consider finer conformance 
relations than simple trace semantics (as considered in this paper). Examples of 
existing algorithms of this class are described in [This 95] for considering liveness 
properties and in [Bran 94, Male95, Dris 00] for considering hard real-time properties. 
Some other work [Parr 89] was done in the context of the specification formalism CSP 
[Hoare 85] and observational equivalence for which it is known that no solution 
algorithm exists because the problem is undecidable. 
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