
 1

Submodule construction – the inverse of composition *

Gregor v. Bochmann

School of Information Technology and Engineering (SITE)

University of Ottawa, Canada

(September 6, 2001)

Abstract
We consider the following problem: For a system consisting of two submodules, the
behavior of one submodule is known as well as the desired behavior S of the global
system. What should be the behavior of the second submodule such that the behavior
of the composition of the two submodules conforms to S ? - This problem has also
been called "equation solving", and in the context of supervisory control, it is the
problem of designing a suitable controller (second submodule) which controls a given
system to be controlled (first submodule). Solutions to this problem have been
described in the context of various specification formalisms and various conformance
relations.
This paper presents a generalization of this problem and its solution in the context of
relational databases, and shows that this general solution can be used to derive several
of the known algorithms that solve the problem in the context of regular behavior
specifications based on finite state machines with synchronous communication or
interleaving semantics. The paper also provides a new solution formula for the case
that the module behaviors are specified in a hypothesis-guarantee paradigm and
distinguish between input and output interactions. In the sub-case of regular behavior
specifications and interleaving semantics, this solution formula gives rise to an
algorithm for Input/Output Automata, which is similar to one published recently. The
formula also applies to the case of synchronous communication, which was not
considered before.

1. Introduction

In automata theory, the notion of constructing a product machine S from two given
finite state machines S1 and S2, written S = S1 x S2, is a well-known concept. This
notion is very important in practice since complex systems are usually constructed as a
composition of smaller subsystems, and the behavior of the overall system is in many
cases equal to the composition obtained by calculating the product of the behaviors of
the two subsystems. Here we consider the inverse operation, also called equation
solving: Given the composed system S and one of the components S1, what should be
the behavior S2 of the second component such that the composition of these two
components will exhibit a behavior equal to S. That is, we are looking for the value of

* This work was partly supported by a research grant from the Natural Sciences and Engineering
Research Council of Canada. An overview of the results presented here was presented at the 6-th
International Conference on Implementation and Application of Automata, Pretoria, South Africa, on
July 23, 2001 (as an invited presentation).

 2

X which is the solution to the equation S1 x X = S. This problem is an analogy of the
integer division, which provides the solution to the equation N1 * X = N for integer
values N1 and N. In integer arithmetic, there is in general no exact solution to this
equation; therefore integer division provides the largest integer which multiplied with
N1 is smaller than N. Similarly, in the case of equation solving for machine
composition, we are looking for the most general machine X which composed with S1
satisfies some conformance relation in respect to S. In the simplest case, this
conformance relation is trace inclusion.

A first paper of 1980 [Boch 80d] (see also [Merl 83]) gives a solution to this problem
for the case where the machine behavior is described in terms of labeled transition
systems (LTS) which communicate with one another by synchronous interactions.
This work was later extended to the cases where the behavior of the machines is
described in CCS or CSP [Parr 89], by finite state machines (FSM) communicating
through message queues [Petr 98] or input/output automata [Dris 99], and to
synchronous finite state machines [Qin 91, Kim 97, Yevt 01a].

The applications of this equation-solving method was first considered in the context of
the design of communication protocols, where the components S1 and S2 may
represent two protocol entities that communicate with one another [Merl 83]. Later it
was recognized that this method could also be useful for the design of protocol
converters in communication gateways [Kele 94, Tao 97a], and for the selection of test
cases for testing a module in a context [Petr 96a]. It is expected that it could also be
used in the other application domains where the re-use of components is important. If
the specification of the desired system is given together with the specification of a
module to be used as one component in the system, then equation solving provides the
specification of a new component to be combined with the existing one.

Independently, the same problem was identified in control theory for discrete event
systems [Rama 89] as the problem of finding a controller for a given system to be
controlled. In this context, the specification S1 of the system to be controlled is given,
as well as the specification of certain properties that the overall system, including the
controller, should satisfy. If these properties are described by S, and the behavior of the
controller is X, then we are looking for the behavior of X such that the equation S1 x
X = S is satisfied. Solutions to this problem are described in [Bran 94] using a
specification formalism of labeled transition systems where a distinction of input and
output is made (interactions of the system to be controlled may be controllable (which
corresponds to output of the controller) or uncontrollable (which correspond to input to
the controller). This specification formalism seems to be equivalent to input/output
automata (IOA) [Lync 89].

In this paper we show that the above equation solving problem in the different contexts
of LTS, communicating finite state machines (synchronous and asynchronous) and
IOA are all special cases of a more general problem which can be formulated in the
context of relational database theory which is a generalized to allows for non-finite
relations (i.e. relations representing infinite sets). We give the solution of this general
problem and give a proof of its correctness. We also show how the different
specialized version of this problem - and the corresponding solutions - can be derived
from the general database version.

 3

These results were obtained after discussions with N. Yevtushenko about the similarity
of the formulas that describe the solution of the equation in [Yevt 01a] and [Merl 80].
The generalization described here became apparent after listening to a talk on
stochastic relational databases by Cory Butz. In fact, it appears that the solution in the
context of relational databases, as described in this paper, can be extended to the case
of Bayesian databases.

After a review of basic notions of relational databases, we present in Section 3 the
problem of equation solving in the database context and provide solution formulas and
their proofs. In Section 4, we discuss how the database model can be adapted to model
the dynamic behavior of systems and their components based on trace semantics, that
is, when the behavior of a system component is characterized by the set of possible
traces of interactions in which it could participate. We consider the cases of
synchronous rendezvous communication and interleaving semantics. We also explain
how the solution formula for databases can be used to derive solution algorithms for
systems with regular behavior (i.e. described by finite state transition systems). In
Section 5 we introduce the distinction of input and output which allows the
specification of a component behavior using the hypothesis-guarantee paradigm. We
state appropriate conformance relations which can be used to define the submodule
construction problem. Then we present a general solution formula and its proof. A
discussion of related work in the context of other specification formalisms and
conformance relations concludes the paper.

2. Review of some notions from the theory of relational databases

The following concepts are defined in the context of the theory of relational databases
[Maie 83]. Informally, a relational database is a collection of relations where each
relation is usually represented as a table with a certain number of columns. Each
column corresponds to an attribute of the relation and each row of the table is called a
tuplet. Each tuplet defines a value for each attribute of the relation. Such a tuplet
represents usually an “object”, for instance, if the attributes of the employee relation
are name, city, age, then the tuplet <Alice, Ottawa, 25> represents the employee
“Alice” from “Ottawa” who is 25 years old.

The same attribute may be part of several relations. Therefore we start out with the
definition of all attributes that are of relevance to the system we want to describe.

Definition (attributes and their values): The set A = {a1, a2, …, am} is the set of
attributes. To each attribute ai is associated a (possibly infinite) set Di of possible
values that this attribute may take. Di is called the domain of the attribute ai . We
define D = U Di to be the discriminate union of the Di .

Definition (relation): Given a subset Ar of A, a relation R over Ar, written R[Ar], is a
(possibly infinite) set of mappings T: Ar --> D with T(ai) ε Di. An integrity constraint
is a predicate on such mappings. If the relation R has an integrity constraint C, this
means that for each T ε R, C(T) is true.

 4

Note: In the informal model where a relation is represented by a table, a mapping T
corresponds to a tuplet in the table. Here we consider relations that may include an
infinite number of different mappings.
Definition (projection): Given R[Ar] and Ax ⊆ Ar , the projection of R[Ar] onto Ax ,
written projAx (R), is a relation over Ax with

T ε projAx (R) iff there exists T’ ε R such that for all ai ε Ax , T(ai) = T’(ai)

We note that here T is the restriction of T’ to the subdomain Ax . We also write T =
projAx (T’).

Definition (natural join): Given R1[A1] and R2[A2], we define the (natural) join of the
relations R1 and R2 to be a relation over A1 U A2 , written R1 join R2 , with

 T ε (R1 join R2) iff projA1 (T) ε R1 and projA2 (T) ε R2

Definition (chaos): Given Ar ⊆ A, we call chaos over Ar , written Ch[Ar] , the relation
which includes all elements T of Ar --> D with T(ai) ε Di , that is, the union of all
relations over Ar.

Note: We note that Ch[Ar] is the Cartesian product of the domains of all the attributes
in Ar . The notion of “chaos” is not common in database theory. It was introduced by
Hoare [Hoar 85] to denote the most general possible behavior of a module. It was also
used in several papers on submodule construction [xxFSM, Dris 99b].

It is important to note that we consider here infinite attribute value domains and
relations that contain an infinite number of mappings (tuplets). In the context of
traditional database theory, these sets are usually finite (although some results on
infinite databases can be found in [Abit 95]). This does not change the form of our
definitions, however. If one wants to define algorithms for solving equations involving
such infinite relations, one has to worry about the question of what kind of finite
representations should be adopted to represent these relations. The choice of such
representations will determine the available algorithms and at the same time introduce
restrictions on the generality of these algorithms. Some of these representation choices
are considered in Sections 4 and 5.

3. Equation solving in the context of relational databases

3.1. Some interesting problems (simplest configuration)

In the simple configuration assumed in this subsection, we consider three attributes a1,
a2, and a3, and three relations R1[{a2, a3}], R2[{a1, a3}], and R3[{a2, a1}]. Their
relationship is informally shown in Figure 3.1 .

 5

Figure 3.1: Configuration of 3 relations sharing 3 attributes

We consider the following equation (which is in fact an inclusion relation)

 proj {a2, a1} (R1 join R2) ⊆ R3 (Equ. 1)

If the relations R1 and R3 are given, we can ask the question: for what relation R2 will
the above equation be true. Clearly, the empty relation, R2��� �����������	
����������
this equation. However, this case is not very interesting. Therefore we ask the
following more interesting questions for the given relations R1 and R3 :

Problem (1): Is there a maximal relation R2 that satisfies the above equation (maximal
in the sense of set inclusion; any larger relation is no solution) ?

Problem (2): Could there be more than one maximal solution (clearly not including one
another) ?

Problem (3): Is there a solution for the case when the ⊆ operator is replace by
equality of by the ⊇ operator ?

3.2. Some solutions

First we note that there is always a single maximal solution. This solution is the set

Sol(2) = {T ε Ch[{a1, a3}] | proj {a2, a1} (R1 join {T}) ⊆ R3 } (Equ. 2)

This is true because the operators of set union and intersection obey the distributive
law in respect to the projection and join operations, that is, projAx (Ri union Rj) =
projAx (Ri) U projAx (Rj); and similarly for intersection and the join operations.

While the above characterization of the solution is trivial, the following formula is
useful for deriving algorithms that obtain the solution in the context of the specific
representations discussed in Sections 4 and 5.

Theorem: A solution for R2 that satisfies Equation (1), given R1 and R3 , is given by
the following formula (where “/” denotes set substraction):

Sol(3) = Ch[{a1, a3}] / proj{a1, a3} (R1 join (Ch[{a1, a2}] / R3)) (Equ. 3)

This is the largest solution and all other solutions of Equation (1) are included in this
one.

R3

R1 R2

a1

a3

a2

 6

Informally, Equation (3) means that the largest solution consists of all tuplets over {a1,
a3} that cannot be obtained from a projection of a tuplet T [{a1, a2, a3}] that can be
obtained by a join from an element of R1 and a tuplet from Ch[{a1, a2}] that is not in
R3.

Proof: First we note that (T2 ε Sol(3)) is equivalent to the statement that there exist no
T ε Ch [{a1, a2, a3}] such that (Equivalence 4)

 proj{a1, a3}(T) = T2 and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3

We have to prove that Sol(3) = Sol(2) . In order to show that Sol(3) ⊆ Sol(2), we show that

 proj {a2, a1} (R1 join Sol(3)) ⊆ R3 (Equ. 5)
Taking any T’ ε (R1 join Sol(3)), we have proj{a2, a3}(T’) ε R1 and proj{a1, a3}(T’) ε Sol(3) .
Since proj{a1, a3}(T’) ε Sol(3) , there is, according to Equivalence (4), no T ε Ch [{a1, a2,
a3}] such that proj{a1, a3}(T) = proj{a1, a3}(T’) and proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε
R3 . Since T’ satisfies the first two of these three conditions, we conclude that the last
condition must be false for T’. Therefore we have that proj{a1, a2}(T’) ε R3 which
implies Equation (5).

In order to prove that Sol(3) ⊇ Sol(2) , we assume that this is not true and that there exist
a tuplet T’ that is in Sol(2) , but not in Sol(3) . However, the latter implies, according to
Equivalence (4), that there exists a T ε Ch [{a1, a2, a3}] such that

 proj{a1, a3}(T) = T’ and T1 =
def proj{a2, a3}(T) ε R1 and proj{a1, a2}(T) ¬ε R3 (Equ. 6)

Considering the definition of the join operation, we conclude that {T} = {T’} join {T1}
since the join of two singleton relations contains at most one tuplet. But now we have a
contradiction because (T’ ε Sol(2)) implies proj{a1, a2} ({T’} join {T1}) ⊆ R3 while
Equation (6) states proj{a1, a2} ({T’} join {T1}) ¬ε R3 . Therefore our assumption must
be false. Q.E.D.

We note that the smaller solution

 Sol(3*) = proj{a1, a3} (R1 join R3) / proj{a1, a3} (R1 join (Ch[{a1, a2}] / R3)) (Equ. 3*)

is also an interesting one, because it contains exactly those tuplets of Sol(3) that can be
joint with some tuplet of R1 to result in a tuplet whose projection on {a1, a2} is in R3 .
Therefore (R1 join Sol(3)) and (R1 join Sol(3*)) are the same set of tuplets; that means
the same subset of R3 is obtained by these two solutions. In this sense, these solutions
are equivalent. We note that the solution formula given in [Merl 83] corresponds to the
solution Sol(3*).

3.3. Some simple example
We consider here a very simple example of three relations R1[{a2, a3}], R2[{a1, a3}],
and R3[{a2, a1}] as discussed above and shown in Figure 3.1. We assume that the
domains of the attributes are as follow: D1 = {n}, D2 = {aa, ab, ba, bb} and D3 = {c, d}.
We assume that R1 and R3 contain the tuplets shown in Figure 3.2 below. Then the
evaluation of the solution formula Equation (3) leads to some intermediate results and
the solution Sol(3) , also shown in Figure 3.2.

 7

Figure 3.2 : Example of database equation solving (Example 1)

3.4. A more general setting of the problem

In Section 3.2 we assumed that all the three relations have two attributes and that each
pair of relations share exactly one attribute. However, we may consider more general
situations, such as shown in Figure 3.3. Here we consider different subsets A1, A2, A3

and A0 of the global set of attributes A. The subsets A1, A2, and A3 correspond to the
attributes a1, a2, and a3 considered in Section 3.1, while the subset A0 is a set of
attributes that are shared by all three relations.

Figure 3.3: Configuration of 3 relations sharing various attributes

The generalization of Equation (1) is then defined as follows. We consider the three
relations R1[A2 U A3 U A0], R2[A1 U A3 U A0], , and R3[A2 U A1 U A0]. We consider
the equation

 proj (A2 U A1 U A0) (R1 join R2) ⊆ R3 (Equ. 1’)

If the relations R1 and R3 are given, the largest relation R2 that satisfies the above
equation is then characterized by the formula

 Sol(3’) = Ch[A1 U A3 U A0] / proj (A1 U A3 U A0) (R1 join (Ch[A1 U A2 U A0] / R3))

 (Equ. 3’)

The proof of this equation is similar to the proof of Equation (3).

c n

d n

a3 a1

aa n

ba n

bbn

a2 a1

��������������	�
���

�������������������	�
����

aa

a2

d n

a3 a1

c n

a3 a1

���
����

ab n

a2 a1

��� ���

d aa

d ab

c ab

a3 a2

��������������

R3

R1 R2

A1

A3

A2

A0

 8

4. Equation solving in the context of composition of sequential machines or
reactive software components

4.1. Modeling system components and behavior using traces

Sequential machines and reactive software components are often represented as black
boxes with ports, as shown in Figure 4.1. The ports, shown as lines in Figure 4.1, are
the places where the interactions between the component in question and the
components in its environment take place. Sometimes arrows indicate the direction of
the interactions, implying that one component produces the interaction as output while
the other component(s) accept it as input. This distinction is further discussed in
Section 5.

Figure 4.1 : Components and their ports

For allowing the different modules to communicate with one another, their ports must
be interconnected. Such interconnection points are usually called interfaces. An
example of a composition of three modules (sequential machines or reactive software
components) is shown in Figure 4.2. Their ports are pair-wise interconnected at three
interfaces a1, a2, and a3.

Figure 4.2 : Configuration of 3 components interconnected through 3 interfaces

The dynamic behavior of a module (sequential machine or a reactive software
component) is usually described in terms of traces, that is, sequences of interactions
that take place at the interfaces to which the module is connected. Given an
interconnection structure of several modules and interfaces, we define for each
interface i the set of possible interactions Ii that may occur at that interface. For each
(finite) system execution trace, the sequence of interactions observed at the interface ai
is therefore an element of Ii * (a finite sequence of elements in Ii).

For communication between several modules, we consider in this paper rendezvous
interactions. This means that, for an interaction to occur at an interface, it is necessary
that all modules connected to that interface must make a state transition compatible
with that interaction at that interface.

R1 R2

R3

a1 a2

a3

 9

In our basic communication model we assume that the interactions between the
different modules within the system are synchronized by a clock, and that there must
be an interaction at each interface during each clock period. We call this “synchronous
operation”.

4.2. Correspondence with the relational database model

We note that the above model of communicating system components can be described
in the formalism of (infinite) relational databases as follows:

(1) A port corresponds to an attribute and a module to a relation. For instance, the
interconnection structure of Figure 4.2 corresponds to the relationship shown in
Figure 3.1. The interfaces a1, a2, and a3 in Figure 4.2 correspond to the three
attributes a1, a2, and a3 introduced in Section 2.2, and the three modules
correspond to the three relations.

(2) If a given port (or interface) corresponds to a particular attribute ai, then the
possible execution sequences Ii* occurring at that port correspond to the
possible values of that interface, i.e. Di = Ii* .

(3) The behavior of a module Mx is given by the tuplets Tx contained in the
corresponding relation Rx [Ax], where Ax corresponds to the set of ports of Mx.
That is, a trace tx of the module X corresponds to a tuplet Tx which assigns to
each interface ai the sequence of interactions sxi observed at that interface
during the execution of this trace. We write sxi

@t to denote the t-th element of
sxi

Since we assume “synchronous operation” (as defined in Section 4.1), all tuplets in a
relation describing the behavior of a module must satisfy the following constraint:

Synchrony constraint: The length of all attribute values are equal. (This is the
length of the trace described by this tuplet.)

As usual, we assume that the possible traces of a module are closed under the prefix
relation. Therefore a relation R[A] describing the behavior of a module must also
satisfy the following constraint:

Prefix-closure constraint: If Tx ε R and Ty is such that sxi is a prefix of syi for all i
ε A (and Ty satisfies the synchrony constraint), then Ty ε R.

As an example we consider two module behaviors R1 and R2 which have some
similarity with the relations R1 and R2 considered in the database example of Section
3.3. These behaviors are described in the form of finite state transition machines in
Figure 4.3. The interactions at the interface a� are a, b or n, the interactions at a� are c,
d or n, and the interface a� only allows the interaction n. The notation b/n for some
state transition means that this transition occurs when at one interface the interaction b
occurs and at the other interface the interaction n. For instance, the traces of length 3
defined by the behavior of R� are (a/n, n/c. b/n), (a/n, n/d, b/n), and (a/n, n/d, a/n),
which are similar, in some sense, to the tuplets in the relation R��of the example in
Section 3.3.

 10

Figure 4.3 : Behavior specifications R1 and R2 (Example 2)

4.3. The case of synchronous finite state machines

If we restrict ourselves to the case of regular behavior specifications, where the
(infinite) set of traces of a module can be described by a finite state transition model,
we can use Equation (3) or Equation (3*) to derive an algorithm for equation solving.
We note that the algorithm reported in [Yevt 01a] corresponds to Equation (3). Similar
work is also described in [Kim 97] and [Qin 91]. In this case, the behavior
specification for a module is given in the form of a finite state transition diagram where
each transition is labeled by a set of interactions, one for each port of the module, as in
the example above.

The algorithm for equation solving is obtained from Equation (3) or Equation (3*) by
replacing the relational database operators projection, join and substraction by the
corresponding operations on finite state automata. The database projection corresponds
to eliminating those interaction labels from all transitions of the automaton which
correspond to attributes that are not included in the set of ports onto which the
projection is done. This operation, in general, introduces nondeterminism in the
resulting automaton. The join operation corresponds to the composition operator of
automata which is of polynomial complexity (see above references for more details).
The substraction operation is of linear complexity if its two arguments are
deterministic. Since the projection operator introduces nondeterminism, one has to
include a step to transform the automata into their equivalent deterministic forms. This
step is of exponential complexity. Therefore the equation solving algorithm for
synchronous finite state machines is of exponential complexity. However, our
experience with some examples involving the interleaved semantics described below
[Dris 99a] indicates that reasonably complex systems can be handled in many cases.

4.4. The case of interleaving rendezvous communication

Under this subsection, we consider non-synchronous rendezvous communication also
called interleaving semantics, were at each instant in time at most one interaction takes
place within all interconnected system components. This communication paradigm is
used for instance with labeled transition systems (LTS). One way to model the
behavior of such systems is to consider a global execution trace which is the sequence
of interactions in the order in which they take place at the different interfaces (one
interface at a time). Each element of such an execution sequence defines the interface

a/n

b/n

a/n n/c

n/d

n/d R3 R1

n/n
b/n

b/n

a/n

a/n

 11

ai at which the interaction occurred and the interaction vi which occurred at this
interface.

Another way to represent the behavior of such systems is to reduce it to the case of
synchronous communication as follows. This is the approach which we adopt in this
paper because it simplifies the correspondence with the relational database model. In
order to model the interleaving semantics, we postulate that all sets Ii include a dummy
interaction, called null. It represents the fact that no interaction takes place at the
interface. We then postulate that each tuplet T of a relation R[A] satisfies the following
constraint:

Interleaving constraint: For all time instants t (t > 0) we have that T(ai)[t] ��null
implies T(aj)[t] = null for all aj ε A (j ���	

We note that tuplets that are equal to one another except for the insertion of time
periods during which all interfaces have the null interaction are equivalent (called
stuttering equivalence). One may adopt a normal form representation for such an
equivalence class in the form of the execution sequence (in this class) that has no time
instance with only null interactions. This execution sequence is trivially isomorphic to
the corresponding interaction sequence in the first interleaving model considered
above.

We note that we may assume that all relations satisfy the constraint that they are closed
under stuttering, that is, T ε R implies that R also contains all other tuplets T’ that are
stuttering equivalent to T.

4.5. The case of finite labeled transition systems

The interleaving rendezvous communication is adopted for labeled transition systems
(LTS) (voir e.g. [Hoare 85]). To simplify the notation, we assume that the sets of
interactions at different interfaces are disjoint (i.e. Ii intersection Ij = empty for ai ���j),
and we introduce the overall set of interactions I = U(ai ε A) Ii. Then a class of stuttering
equivalent interleaving traces (as described in Section 4.4) correspond one-to-one to a
sequence of interactions in I.

If we restrict ourselves to the case where the possible traces of a module are described
by a finite LTS, the resulting set of possible execution sequences are regular sets and
the operations projection, join and substraction over interleaving traces can be
represented by finite operations over the corresponding LTS representations. The
situation is similar as in the case of synchronous finite state machines, discussed in
Section 4.3, because of the nondeterminism introduced by the project operator, the
substraction operation becomes of exponential complexity. The projection operation
corresponds to replacing the interaction labels of transitions that correspond to ports
that are not included in the projected set by a spontaneous transition label (sometimes
written "i"). The join operation is the standard LTS composition operation, and the
determination and substraction operations can be found in standard text books of
automata theory.

As an example, we may consider the behavior specifications given in Figure 4.3. If we
interpret the interaction "n" as the null interaction, then the behaviors R1 and R3 satisfy
the interleaving constraint described above and can be interpreted as labeled transition

 12

systems. Their traces can be characterized by the regular expressions " (a . b)* " and
" (a . (c . b + d . b + d . a))* ", respectively. If we execute the algorithm implied by
Equation (3) we obtain the solution behavior for R2 which can be characterized by
"c*". This solution is similar to the solution for the database example discussed in
Section 3.3.

5. Distinction of input and output

5.1. Module specification based on hypothesis and guarantees

The rendezvous communication paradigm considered in Section 4 has a drawback
when it comes to its use for requirements specification. Usually, the requirements for a
system module has two parts: (a) the hypothesis that the module may make about the
behavior of the other modules within its environment and general operating
assumptions such as temperature ranges etc., and (b) the guarantees that the module
must provide concerning the behavior it will exhibit during execution.

The distinction between these two aspects cannot be made clearly with the rendezvous
communication paradigm because for any interaction to occur, it is necessary that all
participating modules are ready for it. There is no notion that one of the modules is
particularly responsible for initiating the interaction.

We consider in the following a communication paradigm where, for each interaction
taking place at some interface, there is one participating module for which the
interaction is output, and it is input for all other modules that are connected to that
interface. Whether the interaction will take place or not, and what its parameters will
be, will solely be determined by the outputting module (the interaction must satisfy the
guarantees provided by this module). The other participating modules for which the
interaction is input do not influence the occurrence of the interaction and the values of
its parameters. However, they may make the hypothesis that the outputting modules
will satisfy the guarantees defined by their respective specifications, thus limiting the
range of possibilities for receiving the interaction in question.

This paradigm is the basis for the semantics of (input-output) finite state machines,
Input/Output Automata (IOA) [Lync 89], as well as many software specification
formalisms, such as [Adab 95, Misr 81]. It seems that this paradigm also subsumes the
paradigm of controllable and uncontrollable interactions as considered for discrete
event control design [Rama 89]. We note that in the case of finite state machines and
IOA, we consider partially defined machines; the hypothesis is made that only those
inputs will occur for which a transition is defined.

We can introduce the distinction between input and output in our general relational
database formalism as follows: Each attribute of a relation is marked as either input or
output. An attribute of a relation resulting from a join operation is marked input if the
same attribute is marked as input in the two operands of the join operation, otherwise it
is marked output. A join operation is said to have “output conflict” if there is an
attribute that is marked output for both operands. We consider in the following only
join operations without output conflict.

 13

We now introduce the following notations. Given a relation R[AR] and a tuplet T ε R,
we write T|t for the tuplet which has as values for an attribute ai ε AR the prefix (of
length t) of the value which T has for this attribute. For example, if T = <abc, def> then
T|2 = <ab, de>. And we write T@t for the tuplet which has as value for an attribute ai ε
AR the t-th elemenbt of the sequence which is the value of T for this attribute.For the
example of T above, we have T@1 = <a, d> and T@3 = <c, f>. Similarly, we write
T@t(ai) to denote the t-th element of T(ai).

In order to clearly distinguish between the input and output attributes of a relation R,
we write R[AR

I | AR
O] where ai ε AR

I are the input attributes of R and ai ε AR
O the

attributes marked output.

5.2. Conformance relations

In trace semantics without the distinction of input and output, as discussed in Section
4, the conformance relations are very simple and can be summarized by the following
definitions:

(a) Valid trace: A tuplet (trace) T is valid in respect to a relation (specification) R if
T ε R.

(b) Equivalence of specifications: Two relations (specifications) are equivalent iff
they are equal (i.e. they contain the same traces).

(c) Trace inclusion: An implementation conforms to a specification R iff all
possible traces of the implementation are valid in respect to R.

In the case that we distinguish between inputs and outputs, we can still use the above
definition of a valid trace, but the conformance relations between implementation and
specification, or between different specifications are more complex, as described
below.

In order to define meaningful relations in the context of synchronous operation, we
assume that a specification satisfies the constraint that the output allowed at time t by
the specification does not depend on the input received at time t (but only on previous
inputs and outputs). This implies that a delay of at least one time unit exists between a
received input and the output which is caused by this input. The importance of this
assumption is discussed in [Adab 94, Broy 95].

In addition, we assume that the hypothesis made by a specification about the validity of
the received input at a given time instance does not depend on the output selected by
the module at the same time instance. We call these two assumptions together the unit-
delay constraint (UDC), which can be formally defined as follows:

(d) Given a trace specifications R[AR] and a tuplet T ε R, we write next(T, R) for
the relation that describes the possible interactions at the next time instant,
formally: T’ ε next(T, R) iff the tuplet T’ is of length one and T.T’ ε R, where
“.” denotes the pairwise concatenation of corresponding attribute values.

(e) A trace specification (relation) R[AR
I | AR

O] satisfies the UDC iff for any T ε R
the following holds:

next(T, R) = proj AR
I (next(T, R)) join proj AR

O (next(T, R))

 14

For characterizing conformance relations, it is important to distinguish different cases
of invalid traces. If a given trace (tuplet) T is not valid in respect to a given trace
specification (relation) R[AR

I | AR
O] (i.e. not T ε R), we may consider the longest valid

prefix of T; there must exist a time instant t > 0 such that T|t-1 ε R and T@t ¬ε next(T|t-1
, R) (we use the notation where ¬ε means "not included in"). We now can
distinguish whether the invalidity of the trace is caused by a wrong input or a wrong
output at time instant t as follows:

(i) Wrong output: We say that T has wrong output at time t, written T ε RWO(t) ,
iff T|t-1 ε R and proj AR

O T@t ¬ε proj AR
O next(T|t-1 , R).

(ii) Wrong input: We say that T has wrong input at time t, written T ε RWI(t) , iff
T|t-1 ε R and proj AR

I T@t ¬ ε proj AR
I next(T|t-1 , R).

Clearly, it could also happen that T has wrong input and wrong output at time t.

Based on the above definitions, we can now formally define the meaning of a
component specification R[AR

I | AR
O] (similar to [Abad 94]) as follows:

(1) A trace T over the alphabet A = AR
I U AR

O satisfies the guarantees of R, written
T satG R, iff for all t > 0 the following holds: T|t-1 ε R implies T ¬ ε RWO(t) .

(2) A trace T over A satisfies the hypotheses of R, written T satH R, iff for all t > 0
the following holds: T|t-1 ε R implies T ¬ ε RWI(t) .

(3) A trace T over A satisfies the specification R, written T sat R, iff (T satH R)
implies (T satG R)

(4) A trace T over an arbitrary (larger) alphabet satisfies the specification R[AR
I | AR

O]
iff the projection of T onto A = AR

I U AR
O satisfies R.

(5) Given an interconnection structure containing several components with their
respective behavior specifications Rk (i = 1, 2, …, n), we say that a trace T satisfies
the interconnection structure iff it satisfies the specifications of all component
specifications Rk .

(6) Another specification R’[AR
I | AR

O] conforms to R[AR
I | AR

O] iff for all traces T
we have (T sat R’) implies (T sat R).

5.3. Equation solving for specifications with hypothesis and guarantees

Taking into account the difference between input and output as discussed above, the
problem of equation solving must be formulated in a form different from Equation (1)
in Section 3. Now we want to find the most general specification for R2 such that all
traces that satisfy the interconnection structure of the modules R1 and R2 (see Figure
5.1), and that also satisfy the hypothesis of R3, have the following two properties:

(1) the guarantees of R3 are satisfied, and

(2) the hypotheses of R1 are satisfied.

 15

Figure 5.1 : Composition of components R1 and X with input/output interactions

This can be formalized as follows. We first note that we consider the alphabet A =
A31

O U A31
I U A32

O U A32
I U A12

O U A12
I , as shown in the figure. We introduce

the following abbreviations for the alphabets of the modules R1, X and R3,
respectively:

A1 = A31
O U A31

I U A12
O U A12

I ,
A2 = A32

O U A32
I U A12

O U A12
I ,

A3 = A31
O U A31

I U A32
O U A32

I .

We also note that the elements of (A31
O U A12

O) are the outputs of R1, the other
elements of A1 are its inputs, A32

O U A12
I are the outputs of X, the other elements of

A2 are its inputs, and A31
O U A32

O are the outputs of R3, the other elements of A3
are its inputs.

Given two relations R1 and R3 , the equation solving problem, now, consists of finding
a set of traces X[A1] which satisfies Equation (1IO) below:

projA3 (R1 join X) conforms to R3 (Equ. 1IO)

Theorem: The set of traces Sol(IO) defined by Equation (3IO) is the largest set
satisfying Equation (1IO):

 Sol(IO) = Ch[A2] / projA2 Ut>0 ((Equ. 3IO)

(R1 join R3
WO(t)) U (R1

WI(t) join R3) U (R1
WI(t) join R3

WO(t)))

To prove the correctness of this solution, we proceed in a similar manner as for the
proof of Equation (3) in Section 3.2. We consider an arbitrary trace T produced by the
composition of R1 with the solution Sol(IO), and show that it satisfies the requirement of
the problem. We have to prove that the following property holds for any trace T over
A:

[projA1(T) satH R1 implies projA1(T) satG R1] and
T ε Sol(IO) and [projA3(T) satH R3] (Equ. 7)
 implies [projA3(T) satG R3]

This property can be proven by induction on the length of T. As the basis for the
induction, we consider the trace of zero length for which the property is satisfied.

It is easily seen that the induction step is essentially equivalent to showing the
following property. This property states that if the prefix of length (t-1) of T has the
property that its projections onto A1, A2, and A3 belong to the specifications R1,

R1 X

R3

A32
O

A12
O

A12
I

A32
I A31

O A31
I

 16

Sol(IO) and R3, respectively, then T will have at the next time instant (a) correct output
in respect to R3 and (b) correct input in respect to R1. Formally:

(projA1(T
|t-1) ε R1) and (projA2(T) ε Sol(IO)) and (projA3(T

|t-1) ε R3)
and (projA3(T

|t) ¬ε R3
WI(t)) implies (Equ. 8)

(projA3(T
|t) ¬ε R3

WO(t)) and (projA1(T
|t) ¬ε R1

WI(t))
The consequence of Equation (8), together with the antecedent of Equation (7), implies
that (projA1(T

|t) ε R1) and (projA3(T
|t) ε R3) are true, thus validating the antecedent of

Equation (8) for the next induction step (i.e. for time t).

In order to show that Equation (8) holds, we use the fact that (projA2(T) ε Sol(IO)).
According to the definition of Sol(IO), this is equivalent to saying that there exists no T’
over A such that (projA2(T’) = projA2(T)) and for some t > 0 any of the following
cases is true:
(a) projA1(T’) ε R1 and projA3(T’) ε R3

WO(t)
(b) projA1(T’) ε R1

WI(t)
 and projA3(T’) ε R3

(c) projA1(T’) ε R1
WI(t)

 and projA3(T’) ε R3
WO(t)

Therefore, the properties (a), (b) and (c) must also be false for T. We note that
falseness of (a) and (c) implies that projA3(T) not ε R3

WO(t) , and the falseness of (b)
and (c) implies that projA1(T) not ε R1

WI(t)
 (which proves the consequence in Equation

(8)).
The proof that Sol(IO) is the largest solution is similar as the corresponding proof in
Section 3.2.

5.4. The case of interleaving semantics

In the case of interleaving semantics, there is at each time instant only a real interaction
at one of the interfaces, while the other interfaces have the null interaction. In this
context, the situation of wrong input has also been called "unspecified reception" [Zafi
80].

In this case, there can never be a time instant with wrong input for R1 and wrong
output for R3. Therefore the term (R1

WI(t) join R3
WO(t)) in the formula for Sol(IO) in the

Theorem of Section 5.3 is empty and can be dropped.

We note that the algorithm described in Section 5 of [Dris 99b] corresponds to the
formula of the above theorem for the case of regular behavior specifications in the
form of Input/Output Automata.

6. Conclusions

The problem of submodule construction (or equation solving for module composition)
has some important applications for the real-time control systems, communication
gateway design, and component re-use for system design in general. Several
algorithms for solving this problem have been developed based on particular
formalisms that were used for defining the dynamic behavior of the desired system and
the existing submodule. In this paper, we have shown that this problem can also be
formulated in the context of relational databases. The solution to the problem is given

 17

in the form of a set-theoretical formula which defines the largest relation that is a
solution of the equation.

Whether this solution is useful for practical applications in the context of relational
databases is not clear. However, we have shown here that the formulation of this
problem in the context of relational databases is a generalization of several of the
earlier approaches to submodule construction, in particular in the context of
synchronous finite state machines [Kim 97, Yevt 01a], Labelled Transition Systems
(LTS) [Merl 83], and Input/Output Automata (IOA) [Dris 99c], and it was explained in
[Dris 99b] that the case of IOA is a generalization of the case of communicating finite
state machines with queued interactions [Petr 98]. In the case of regular behavior
specifications in the form of finite transition machines, the set-theoretical solution
formula of the database context can be used to derive solution algorithms based on the
finite representations of the module behaviors, which correspond to those described in
the literature.

The solution formula for the case of synchronous communication with the distinction
of input and output (implying a module specification paradigm with hypothesis and
guarantees, as discussed in section 5) has not been described before, as far as I know. It
can be used to derive an algorithm to solve the submodule construction problem for
synchronous communicating machines when a distinction between input and output is
made. This context has not yet been considered for the problem of submodule
construction.

We believe that these solution formulas can also be used to derive submodule
construction algorithms for specification formalism that consider finer conformance
relations than simple trace semantics (as considered in this paper). Examples of
existing algorithms of this class are described in [This 95] for considering liveness
properties and in [Bran 94, Male95, Dris 00] for considering hard real-time properties.
Some other work [Parr 89] was done in the context of the specification formalism CSP
[Hoare 85] and observational equivalence for which it is known that no solution
algorithm exists because the problem is undecidable.

Acknowledgements

I would like to thank the late Philip Merlin with whom I started to work in the area of
submodule construction. I would also like to thank Nina Yevtushenko (Tomsk
University, Russia) for many discussions about submodule construction algorithms and
the idea that a generalization of the concept could be found for different behavior
specification formalisms. I would also like to thank my former colleague Cory Butz for
giving a very clear presentation on Bayesian databases which inspired me the database
generalization described in Section 3 in this paper. Finally, I would like to thank my
former PhD students Z.P. Tao and Jawad Drissi whose work contributed to my
understanding of this problem.

 18

References

[Abad 95] M. Abadi and L. Lamport, Conjoining specifications, ACM Transactions
on Programming Languages & Systems, vol.17, no.3, May 1995, pp. 507-34.

[Abit 95] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[Boch 80d] G. v. Bochmann and P. M. Merlin, On the construction of communication
protocols, ICCC, 1980, pp.371-378, reprinted in "Communication Protocol Modeling",
edited by C. Sunshine, Artech House Publ., 1981; russian translation: Problems of
Intern. Center for Science and Techn. Information, Moscow, 1981, no. 2, pp. 146-155.

[Broy 95] M. Broy, Advanced component interface specification, Proc. TPPP’94,
Lecture Notes in CS 907, 1995, pp. 369-392.

[Bran 94] B. A. Brandin and W. M. Wonham, Supervisory Control of Timed Discrete-
Event Systems, IEEE Tran. on Automatic Control, Vol.39, No.2, Feb. 1994.

[Dris 99a] J. Drissi and G. v. Bochmann, Submodule construction tool, in Proc. Int.
Conf. on Computational Intelligence for Modelling, Control and Automation, Vienne,
Febr. 1999, (M. Mohammadian, Ed.), IOS Press, pp. 319-324.

[Dris 99b] J. Drissi and G. v. Bochmann, Submodule construction for systems of I/O
automata, submitted for publication.

[Dris 00] J. Drissi and G. v. Bochmann, Submodule construction for systems of timed
I/O automata, submitted for publication, see also J. Drissi, PhD thesis, University of
Montreal, March 2000 (in French).

[Hoar 85] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[Kele 94] S. G. H. Kelekar, Synthesis of protocols and protocol converters using the
submodule construction approach, Proc. PSTV, XIII, A. Danthine et al (Eds), 1994.

[Kim 97] T.Kim, T.Villa, R.Brayton, A.Sangiovanni-Vincentelli. Synthesis of FSMs:
functional optimization. Kluwer Academic Publishers, 1997.

[Lync 89] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata, CWI
Quarterly, 2(3), 1989, pp. 219-246.

[Maie 83] D. Maier, The Theory of Relational Databases, Computer Science Press,
Rockville, Maryland, 1983.

[Male 95] O. Maler, A. Pnueli and J. Sifakis, On the synthesis of discrete controllers
for timed systems, STACS 95, Annual Symp. on Theoretical Aspects of Computer
Science, Berlin, 1995, Springer Verlag, pp. 229-242.

 19

[Merl 83] P. Merlin and G. v. Bochmann, On the Construction of Submodule
Specifications and Communication Protocols, ACM Trans. on Programming
Languages and Systems, Vol. 5, No. 1 (Jan. 1983), pp. 1-25.

[Misr 81] J. Misra and K. M. Chandy, Proofs of networks of processes, IEEE Tr. on
SE, Vol. SE-7 (July 1991), pp. 417-426.

[Parr 89] J. Parrow, Submodule Construction as Equation Solving in CCS, Theoretical
Computer Science, Vol. 68, 1989.

[Petr 96a] A. Petrenko, N. Yevtushenko, G. v. Bochmann and R. Dssouli, Testing in
context: framework and test derivation, Computer Communications Journal, Special
issue on Protocol engineering, Vol. 19, 1996, pp.1236-1249.

[Petr 98] A. Petrenko and N. Yevtushenko, Solving asynchronous equations, in Proc.
of IFIP FORTE/PSTV’98 Conf., Paris, Chapman-Hall, 1998.

[Qin 91] H. Qin and P. Lewis, Factorisation of finite state machines under strong and
observational equivalences, Journal of Formal Aspects of Computing, Vol. 3, pp. 284-
307, 1991.

[Rama 89] P. J. G. Ramadge and W. M. Wonham, The control of discrete event
systems, in Proceedings of the IEEE, Vo. 77, No. 1 (Jan. 1989).

[Tao 97a] Z. Tao, G. v. Bochmann and R. Dssouli, A formal method for synthesizing
optimized protocol converters and its application to mobile data networks, Mobile
Networks & Applications, vol.2, no.3, 1997, pp.259-69. Publisher: Baltzer; ACM
Press, Netherlands.

[Tao 95d] Z. P. Tao, G. v. Bochmann and R. Dssouli, A model and an algorithm of
subsystem construction, in proceedings of the Eighth International Conference on
parallel and distributed computing systems, Sept. 21-23, 1995 Orlando, Florida, USA,
pp.619-622.

[This 95] J. G. Thistle, On control of systems modelled as deterministic Rabin
automata, Discrete Event Dynamic Systems: Theory and Applications, Vol. 5, No. 4
(Sept. 1995), pp. 357-381.

[Yevt 01a] N.Yevtushenko, T.Villa, R.Brayon, A.Petrenko, A.Sangiovanni-
Vincentelli. Synthesis by language equation solving (exended abstract), in Proc.of
Annual Intern.workshop on Logic Snthesis, 2000, 11-14; complete paper to be
published in ICCAD’2001; see also Solving Equations in Logic Synthesis, Technical
Report, Tomsk State University
�
�����
����p. (in Russian).

[Zafi 80] P. Zafiropulo, C. H. West, H. Rudin and D. D. Cowan, Towards analyzing
and synthesizing protocols, IEEE Tr. Comm. COM-28, 4 (April 1980), pp. 651-660.

 20

